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Abstract. A quasi-one-dimensional version of the frustrated X Y model used to describe 
Josephson junction arrays and granular superconductors is described. I t  is shown that there 
are two distinct types of ground state, depending on whether the frustration is greater than 
or less than a critical amount. The small fluctuations around the weak frustration ground 
state are analysed by diagonalising the Hessian matrix; this gives an expression for the 
low-temperature specific heat of the network. By an extension of this analysis to include 
the effect of twisted boundary conditions, the critical current of the system is calculated in 
the low-flux regime. Finally the effect of diamagnetic screening currents are included. 

1. Introduction 

The frustrated X Y  model 11-15] has been of recent interest because of its relevance 
to granular superconductors, artificially made networks of superconducting wires and 
Josephson junction arrays. It is now of even greater interest since the discovery of 
high-temperature superconductors. The existence of grains within these new materials 
is much more important than in conventional superconductors because of the short 
coherence lengths of the electron pairs, which are of the order of the grain boundary 
width. It  is believed that some of the magnetic effects in these materials can be 
explained by their granularity [13]. 

In this paper the properties of the model are studied on a quasi-one-dimensional 
‘ladder’ network which is simpler to treat both analytically and numerically but retains 
many of the features of the full model. This network has been studied previously by 
Kardar [15]. 

In $2 the model and the ladder network are described. In 93 the ground states of the 
system will be discussed and it will be shown that the ground states for weak frustration 
are qualitatively different from those with strong frustration and the existence of a 
critical value of the frustration will be inferred. In 94 the effects of small fluctuations 
about the ground state will be considered by diagonalising the Hessian matrix. This 
leads to an estimate of the low-temperature specific heat of the system. In $5 the small 
fluctuation analysis will be extended to the case of a weakly frustrated array with 
twisted boundary conditions which carries a bulk current along the ladder. The value 
of the net current at which the state becomes unstable, indicated by a soft mode in 
the fluctuation spectrum, will be determined and identified as the critical current of 
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the array. Section 6 will include the self-consistent effects of the diamagnetic screening 
currents in the weak frustration ground state. Finally, $7 contains a brief summary. 

2. The frustrated X Y  model and the ladder network 

Consider an array of grains of superconducting material embedded in a normal matrix, 
as depicted in figure 1. Below the bulk transition temperature, T,c, each grain has its 
own complex order parameter. y = pexp(i0). Well below T,, the modulus, p, is 
approximately the same on each grain, but the phase angle, 0, is subject to strong 
thermal fluctuations (corresponding to Goldstone modes of the bulk transition). If 
the grains were widely separated then the phases would always be uncorrelated, but 
if the grains are very closely packed then the Josephson effect will couple the phases 
on adjacent grains (this is true if the matrix is an  insulator: if it is a normai metal 
then the proximity effect leads to the same qualitative form for the coupling). In the 
absence of any external magnetic fields, the Josephson coupling has the normal X Y  
model form, with the phase variables playing the role of X Y  spins. We can therefore 
write an  effective Hamiltonian for the phase degrees of freedom of the form 

H = - J (  T )  C O S ( O ~  - Oi).  (2.1) 
(;,I) 

Consequently, in two dimensions the model will have a Kosterlitz-Thouless transition 
[14]. below which the phases will exhibit quasi-long-range order. The phases will of 
course not show true long-range order except at zero temperature. 

Figure 1. A schematic vie& of a regular granular superconductor. The shaded regions are 
superconducting while the unshaded regions are normal. The crosses mark the locations of 
the Josephson junctions. 

I f  a magnetic field is applied perpendicular to the array then an  extra phase shift 
is developed across each junction which is given by 

I 
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where Q0 is the flux quantum and A ( v )  is the vector potential for the magnetic field. 
The Hamiltonian (2.1) is then replaced by 

(2.30) 

(2.3h) 

which defines 4, the gauge-invariant phase difference across a junction. From the 
definition of the twist (2.2) i t  can be seen that the sum of the twists around a plaquette 
is proportional to the number of flux quanta threading that plaquette: 

I t  is also clear that f, is a measure of the frustration on the plaquette: if f is an  integer 
then the energy of each bond on the plaquette can be simultaneously minimised, i f f  
is not an  integer this cannot be done and the plaquette is frustrated. 

The supercurrent flowing across a junction is given by 

where T = 2eJ(T)/t l ,  while the sum of the currents around a plaquette is a local 
magnetisation 

In this paper I propose to consider this model on the ladder network depicted in 
figure 2. Each site of the network is labelled by an  integer coordinate and an  'up or  
down' label s = k. The magnetic field will be assumed to be uniform and to link a flux 
f'@, through each plaquette. In this case the gauge can be chosen so that there are no  
twists on the horizontal bonds and a twist of A ,  = 2nf i  on the ith vertical bond. We 
now define the gauge invariant phase differences 

current variables 

and magnetisation variables 

The Hamiltonian then has the form 

(2.10) 



4898 K A Benedict 

Figure 2. The ladder network of Josephson junction arrays showing the labelling of site, 
bond and plaquette variables. 

Kardar [15] studied this network for a model including the effects of junction 
capacitance and showed that, in the limit of strongly anisotropic couplings: J *  p J o ,  
the network is equivalent to the 1i-1-dimensional sine-Gordon model which has been 
exactly solved by Haldane [17]. 

3. Ground states of the model 

The Hamiltonian (2.6) has an  obvious global continuous symmetry: e,’ H 0; + x ,  
consequently any state, including the ground state, is a member of a continuous, U( l ) ,  
family of degenerate states. In addition to this, when f is not an  integer, there are extra, 
discrete, degeneracies associated with the ordering of the magnetisation variables. In 
all of the following the trivial U ( l )  degeneracy will be assumed to have been removed 
by fixing the value of one phase angle. 

Ground states were found numerically using a Langevin (gradient descent) al- 
gorithm. The system was initialised with a random configuration and then evolved 
according to the relaxational dynamics 

where !l!’(t) was drawn from a Gaussian white noise distribution 

(3.2) 

characterised by a temperature T .  The temperature was slowly decreased to zero during 
each run until the changes in the spins fell below a threshold value. For a given value 
of f this was repeated using different sequeneces of noise terms and different start 
configurations (this last was not important as the start temperature was sufficiently 
high to wash out any initial condition effects). 

As would be expected for a frustrated spin system there are many low-lying 
metastable states, but the absence of disorder and the consequent expectation of 
periodic ground states means that the task of finding good ground states is not that 
hard for simple rational values o f f .  Ground states were found for values o f f  of the 
form f = p / q  for systems of length N = I4, for I = 1,2, .  . ., and periodic boundary 
conditions, for y = 1,. . . , 13 and all values of p which gave 0 I f I 1/2 and p / 4  an 
irreducible fraction. 
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It was found that for a given q there existed a critical P ( q )  such that p I P ( q )  
gave a unique, non-chiral (i.e. all magnetisations equal) ground state with period 24, 
whereas each p 2 P ( q )  gave a set of degenerate chiral ground states with period q.  
The values of P ( q )  found are at least consistent with the existance of a critical f (i.e. 
P ( 4 )  - f c q ) :  f ,  2: 0.295. 

For p < P ( q )  the ground states have the form 

The case f = 114 is shown in figure 3. The frozen-in supercurrents in the ground state 
are therefore 

I: = s i s i n n f  (3.4) 

and the magnetisations 

M, = -2Tsinnf. (3.5) 

The ground-state energy is -NJ(O)(I + 2cosnf ) .  It is noticeable that all of these 
quantities are simple functions o f f .  

Figure 3. The forms of the ground state for f = 1/4. The upper left-hand phase in each 
case has been fixed to be zero to remove the U(  I )  degeneracy. The crosses on bonds each 
represent a twist of 2 n f .  Arrows on the bonds indicate the direction of current flow. 

The ground states for p 2 P ( q )  are more complex and are no longer unique. As 
an example the ground states for f = 1/2, where all the plaquettes are maximally 
frustrated, are shown in figure 4. This case has two degenerate ground states given by 

where tan q5 = 112, $J N 0.1487~. The magnitudes of the currents are T sin q5 = T/dS on 
horizontal bonds and ?cos$ = 2T/& on vertical bonds, while the magnetisations are 
of magnitude 6i/&, The ground state energy is - N J ( O ) f i .  The introduction of the 
staggered magnetisation 
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Figure 5. A schematic depiction of the ground states for j = I /3. The signs in the plaquette 
centres denote the direction of current circulation (magnetisation).  The arrow's denote the 
magnitude of the current on each bond: >= 0.347. >>= 0.64T. >>>= 0.987. 

which is invariant under global (and small local) phase rotations provides an  order 
parameter for distinguishing between the two distict chiral ground states. 

The ground states for the case f = 1/3 are shown schematically in figure 5, 
the crosses denoting a positive magnetisation of magnitude 3.251 and the minuses a 
negative magnetisation of magnitude 1.671; the arrows denote the direction of current 
flow along the bonds. 

Figure 6 is a graph of ground state energy against flux per plaquette; i t  is clear 
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that for f > f, the variation is complex with a strong dip at f = 1/2 and marked 
features at f = 1/3 and f = 2 / 5 .  This curve is strongly reminiscent of the graph of 
ground-state energy against flux for the 2D system found by Teitel and Jayaprakash 
[2]  ; the strong features at simple rational flux values correspond to similar effects seen 
by Halsey [8] in his analytically constructed 2D ground states. 

-1.50 
0 a25 0.50 

FLUX per plaquette I Q, 
Figure 6. A plot of ground-state energy versus applied flux for the ladder model. 

I t  is perhaps useful to relate the structure of these ground states to the properties 
of continuum superconductors [15]. The weak frustration states are analagous to the 
Meissner phase with diamagnetic screening currents flowing on the ‘surface’, while 
the strong frustration states correspond to the Abrikosov phase with the positive 
magnetisation plaquettes playing the role of fluxoids. We can, for example, consider 
the f = 1/3 states to be composed of a weak frustration-type state with vortices or 
flux kinks [ 151 introduced on every third plaquette, similarly the f = 1 / 2  state contains 
kinks on every second plaquette. Hence we draw an analogy between f ,  and H,, for 
type-I1 superconductivity. 

There is no analogue of the Meissner phase in the two-dimensional model, presum- 
ably because charging effects are neglected and the local flux density is not calculated 
self-consistently, althought there is evidence of a change in the nature of the ground 
states around f = 1/3 [8]. It is tempting to believe that for f < 1/3 the two dimen- 
sional system is trying to form a flux lattice whereas for f > 1/3 there are too many 
vortices and the staircase states (flux density waves) of Halsey [8] are favoured. 

The existence of a critical frustration f, agrees with Kardar’s work on the strongly 
anisotropic case. The sine-Gordon formulation idicates a transition at f, = 2 / x 2  N 0.2. 
Kardar’s calculation also implies that near this critical value of f the ordering is 
destroyed by any non-zero value of 1/C the inverse capacitance of the junctions; 
whereas for f < f, and f > f, there is a critical value of 1/C below which the ordering 
exists. The results found using the Hamiltonian given in $2 are, therefore, probably not 
stable to the addition of charging effects for f f , .  
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4. Small fluctuations around the ground state 

For the weak frustration ground states, (3.1), it is straightforward to write down the 
Hessian matrix 

where ;' = cosn f .  The eigenvalues of this matrix can be found analytically and have 
the form 

;"..(A) = 25(0);1( 1 - cos k )  
i + ( k )  = 25(0)[1 + ;'( 1 -cos k ) ]  (4.2) 

where k = 2nm/N, 111 = 0, .  . . , N  - I .  This leads to the following form for the density 
of states for fluctuations: 

Making the usual assumption that each of these modes is occupied with a prob- 
ability given by the Gibbs factor corresponding to the energy of the mode. gives the 
following expression for the low-temperature specific heat of the network 

This is of course only valid within the model as stated in equation (2.3), the 
neglected charging effects will have a contribution to the specific heat. In addition, 
this form is only valid for temperatures sufficiently low that the flux kinks or vortices 
cannot be created by thermal processes. 

5. Critical currents 

Consider a ladder array with fixed boundary conditions at the ends (i.e. the phases 
at the ends of the ladder are set to zero). If the the flux threads p/y < f ' , , .  of a flux 
quantum through each plaquette and the length of the ladder is AJ = 2Iy for some 
integer I, then the ground state of the system is the same as for the system with periodic 
boundary conditions, e:. I f  we now slightly increase the phases at  the right-hand end 
of the ladder to a value, 8 ,  then the phases will relax to distribute the twist right along 
the system to give a state of the form 

such that cbf (6)  = knf' + 6,"; 4: = 0. Consequently there is now a net flow of 
supercurrent through the system of magnitude 

I,,,, = 21 cos nf' sin 6 / N .  (5.2) 
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Figure 7. The dipersion curves for the fluctuation modes around the weak frustration 
ground states. for 1’ = 1/5. ( ( I )  0 = 0, i.e. periodic boundary condiiions; ( h )  (j = &,, at the 
metastable state carrying the critical current. 

I f  we now adiabatically (i.e. sufficiently slowly that the phase configuration is always 
a local minimum of the Hamiltonian) increase 6 to 211 the system will once again be 
equivalent to the system with periodic boundary conditions (as far as ground state 
properties) but the phase configuration will be in a metastable minimum carrying a 
bulk supercurrent. If 6 is increased further the state will eventually become unstable 
and there will be a drastic rearrangement of the phase angles resulting in a state 
carrying a lower net current. The current at the critical value of 6 

(5 .3)  I ,  = ~ T C O S  nf sin 6, 

is then interpreted as the critical current of the network [2,8]. 
The Hessian for the state (5.1) is 

which has eigenvalues 

i + ( k )  - = J[1 +2(1 - c o s k ) c o s ( S / N ) c o s n ~  Jr [ l  +4(1 -cosk)‘sin’(6/N)sin’(.irf)]’(5)5) 

The critical value of 6 is reached when one of these modes (other than the k = 0 
Goldstone mode) goes soft. Figure 7 shows ;.+(A) for 6 = 0 and for (5 = 6,. It can be 
seen that the first mode to go soft is at the zone boundary giving 

(5.6) cos(S,/N) = - ~ [ c o s ( n f )  + ( I  + 15 sin’(nf))’’’]. 

The resultant critical current is plotted against f in figure 8. 

6. Self-consistent field effects 

One of the shortcomings of the model as described in $2 is the lack of self-consistent 
treatment of the field in the system, i.e. the neglect of the diamagnetic contribution of 
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Figure 8. The variation of critical current versus external flux for f < fc. 

the supercurrents to the local field. In the chiral type of ground states this is hard to 
include because a uniform external field produces a non-uniform magnetisation, but 
in the weak frustration regime we can include these effects. Let F be the 'applied flux 
per plaquette', ie the flux that would thread each plaquette were it not bounded by 
junctions carrying current. The true flux per plaquette is then 

where g = po/Oo is an effective coupling constant. I f f  < f,, then 

M ,  = -2i sin rt f (6.2) 

which leads to the relation 

F = f, + 2g sin rt f , .  (6.3) 

Hence the local field is uniformly reduced by the diamagnetic current as one would 
expect. 

7. Summary 

The ground-state properties of a quasi-one-dimensional version of the frustrated X Y 
model have been studied. It has been shown that if the applied flux/frustration is weak 
enough then the system has an unique, non-chiral ground state. In this regime exact 
calculations have been performed for the fluctuation spectrum, the low-temperature 
specific heat and zero temperature critical current. The diamagnetic effect of the frozen 
supercurrents on the local field has also been evaluated in this regime. 



The quasi-one-dimensional ,frustrated X Y model 4905 

Acknowledgments 

I t  is a pleasure to thank M A Moore for many useful discussions and one of the 
referees for drawing my attention to references [I41 and [15]. This work was supported 
by the SERC. 

References 

Teitel S and Jayaprakash C 1983 P / I ) ~ .  Rev. B 27 598 
Teitel S and Jayaprakash C 1983 Phys. Rec. Lett. 51 1999 
Shih W, Ebner W and Stroud D 1984 Phys. Rev. B 30 134 
Choi M Y and Doniach S 1985 Pkys. Rev. B 31 4516 
Choi M Y and Stroud D 1985 Pkys. Rev. B 32 5773 
Choi M Y and Stroud D 1985 Phys. Rer. B 32 7173 
Korshunov S E and Uimin G V 1986 J .  Stat. Phys. 43 I 
Halsey T C 1985 Phys. Rer.  B 31 5728 
Halsey T C 1985 J .  Pbys. C: Solid Stare Pkys. IS 2437 
Granato E and Kosterlitz J M Phys. Reu. B 33 6533 
Grest G 1988 Exxort prepriiit 
Benedict K A and Moore M A 1989 Phys. Rer.  B 39 4592 
Muller K A, Takashige M and Bednorz J G 1987 PAy?. Re[.  Lett .  58 I143 
Bradley R M and Doniach S 1984 Phys. Rev. B 30 I138 
Kardar M 1986 Phys. Rei,. B 33 3125 
Kosterlitz J M and Thouless D J 1973 J .  Phys. C: Solid State Pkys. 6 1181 
Haldane F D M 1982 J .  Phys. A :  Math. Gen. 15 507 


